Whether the CHO-binding and the endopeptidase domains represent t

Whether the CHO-binding and the endopeptidase domains represent two separate functions FK228 mw of Mep72 or are required for a single target is yet to be determined. Fourth, LasB, LasA, and PrpL are among the virulence factors whose production is stringently controlled by the QS system [49]. Since the P. aeruginosa las and rhl QS systems are controlled by Vfr, the three extracellular proteases are indirectly regulated by Vfr [49]. In contrast, Mep72, which is directly controlled by Vfr, may not be influenced by QS systems. Through several preliminary

experiments, we ruled out the possibility that mep72 expression is regulated by either the las or the rhl system (data not shown). Fifth, unlike other proteases, the impact of Mep72 on P. aeruginosa virulence is not defined yet. The loss of functional Mep72 in PAO1 did not impact the production of several virulence factors including LasB, LasA, pyocyanin, or pyoverdine (data not shown). Additionally, preliminary analysis using the murine model SN-38 in vivo of thermal injury showed that the in vivo virulence of PW5661 is comparable to that of its parent strain (data not shown). The first such endopeptidase enzyme described was isolated from Pseudomonas fragi, a pyschrotrophic, proteolytic organism that causes meat spoilage by producing a single extracellular neutral protease, endoproteinase

Asp-N, at lower temperatures [50, 51]. As Mep72 has amino acid identity with the P. fragi protein in the endopeptidase region (data not shown), and since P. aeruginosa grows at 10°C, we examined Avelestat (AZD9668) the proteolytic activity of Mep72 at this temperature. At this temperature, Mep72

activity would not be masked by other P. aeruginosa extracellular proteases, which are activated at 37°C. However, we did not detect any difference in their proteolytic zones. The two CHO-binding domains carried by Mep72 belong to the CBM_4_9 family. Proteins in this family are important for very diverse CHO metabolic processes including SC79 research buy enzymatic degradation of oligosaccharides, cellulase activity and hydrolase activity by acting on glycosyl bonds [40, 52, 53]. Whether the CBM_4_9 domain in Mep72 plays a role in P. aeruginosa binding to the alveolar mucus during lung infections is not known. All available evidence, including data provided in this study, suggests that Vfr is a DNA-binding transcriptional regulator [13, 14, 18, 19] (Figures 2 and 7). Using qRT-PCR, we also detected transcriptional regulation of mep72 expression by Vfr (Figure 2). Additionally, one of the unique features of mep72 is its pattern of expression throughout the growth cycle of PAO1, which we detected with both lacZ and phoA translational fusions (Figures 3 and 4). In these experiments, mep72 expression was enhanced by the presence of multiple copies of vfr (lacZ) or expression the lac promoter, which is constitutively expressed in P. aeruginosa (phoA).

Comments are closed.