The anatomical coverage of pCT is limited on the z-axis, as the acquisition is performed in static table position with a scan range of 40 mm. pCT was performed with cine technique with a delay time of 7 sec after the injection of 80 mL non-ionic iodinated contrast material (iopromide, BMN 673 mouse Ultravist 370; Bayer-Schering), followed by 40 mL of saline solution, injected at a rate of 4 mL/sec by an 18-20 Gauge cannula in the
antecubital vein with automatic injector (Stellant, Medrad, Pittsburg, Pa). First-pass scan was obtained with a sampling rate of 1 acquisition per second with a time duration of 45 seconds. After a 25 seconds, a delayed-phase was acquired at the same level with a time duration of 20 seconds. The CT was acquired during quiet respiration and continued for a total time of 65 seconds. The following parameters were used for dynamic study:
eight contiguous 5 mm sections at the same table position, 1-second gantry rotation time, 120 kVp, 80 mA, and 65-seconds acquisition time. The images were reconstructed at a 5 mm thickness and 0,5 sec intervals. The mean effective dose for each patient was about 13 mSv. Image Analysis Data acquired during cine scan were transferred onto an image processing workstation (Advantage Windows 4.4; GE Medical Systems) provided with commercially C646 cost available selleck screening library software for functional Thymidine kinase analysis with deconvolution-based technique (Perfusion 3; GE Medical Systems). The software, after the selection of a threshold value to exclude bone density from the measurements, required to manually or automatically identify arterial input function (AIF) of contrast medium concentration by a 10 mm2 (18-20 pixel
area) region of interest (ROI) manually drawn in the abdominal aorta which was always enclosed in the field of view. Selecting a perpendicular-to-section running artery, it was possible to avoid partial volume artifacts that may underestimate reference blood density, leading to misreporting tissue perfusion data. Then, the software generates Time/Density (Second/Hounsfield Unit) curves from standardized circular regions of interest (ROIs; 10 mm2; 18-20 pixel range) manually positioned in the cryoablated area. Care was taken to embed as much of the solid portions of the tumor as possible in order to exclude the necrotic regions and to avoid tumor limits exceeding to exclude peritumoral hyperaemia. Similar circular ROI was placed in healthy omolateral parenchyma as a control to assess perfusion differences between tumor lesion and normal parenchyma.