“
“Early non-infectious pulmonary complications represent a significant cause of mortality after hematopoietic cell transplantation (HCT). We tested the hypothesis that oral beclomethasone
dipropionate (BDP) is effective for preventing early non-infectious pulmonary complications after allogeneic HCT. We retrospectively reviewed the medical records of 120 patients, 60 in each treatment arm, to identify non-infectious and infectious pulmonary events and pulmonary function test results from all patients who participated in two randomized trials of oral BDP for treatment of acute gastrointestinal GVHD. 17-Beclomethasone monopropionate (17-BMP), the active metabolite of BDP, was evaluated in blood from the right atrium in four patients. Thirty-three of 42 (79%) placebo-treated patients experienced a decrease of the DL(CO) from pretransplant to day 80 after mTOR inhibitor transplant, compared with 27 of 49 (55%) BDP-treated patients (P = 0.02).
In the first 200 days after randomization, there were no cases of non-infectious pulmonary complications selleck screening library in BDP-treated patients, vs four cases among placebo-treated patients (P = 0.04). Levels of 17-BMP were detected in atrial blood at steady state. Delivery of a potent glucocorticoid such as 17-BMP to the pulmonary artery after oral dosing of BDP may be useful in modulating pulmonary inflammation and preventing the development of noninfectious pulmonary complications after allogeneic HCT. Bone Marrow Transplantation (2010) 45, 317-324; doi:10.1038/bmt.2009.129; published online 29 June 2009″
“The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the
role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small check details intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA.