, 2007). Taken together, these results indicate that both OspA and OspB play a role in persistence of B. burgdorferi in the arthropod vector. EX 527 in vitro OspD was initially described by Norris et al. (1992) as a 28-kDa surface lipoprotein encoded on B. burgdorferi plasmid lp38. OspD is downregulated in response to temperature and host signals, and OspD expression reaches its peak on the B. burgdorferi surface shortly after tick feeding and detachment (Brooks et al., 2003; Ojaimi et al., 2003; Tokarz et al., 2004; Li et al., 2007; Stewart et al., 2008). Recombinant OspD can bind tick gut extracts, suggesting that OspD is involved in adherence to the
tick midgut (Li et al., 2007). The role of OspD has been examined in vivo, and OspD was not required for infection of mice by needle inoculation or tick infestation (Li et al., 2007; Stewart et al., 2008). Interestingly, at least one report indicates a defect in colonization of the tick midgut by the OspD-mutant strain, but this defect did not
interfere with ability of the OspD-mutant strain to infect naïve mice via tick infestation (Li et al., 2007). Additionally, clinical isolates have been collected that lack OspD providing further evidence that OspD is not required in the natural life cycle of B. burgdorferi (Marconi et al., 1994). BptA (Borrelial persistence in ticks A) is encoded on plasmid lp25 by open reading frame (ORF) BBE16, and proteinase K surface accessibility assays revealed that this lipoprotein is surface exposed (Revel et al., 2005). BptA is upregulated when Selleck Panobinostat grown in dialysis membrane chambers that mimic the mammalian environment (Revel et al., 2002, ID-8 2005). A B. burgdorferi BptA-mutant strain was attenuated compared with wild type after needle inoculation of mice (Revel et al., 2005). While engorged larvae were able to acquire the BptA mutant from infected mice, the mutant spirochetes were significantly reduced in the tick midgut after molting to the nymphal stage, and no BptA-mutant
spirochetes were detected in tick midguts after the ticks fed to repletion (Revel et al., 2005). These data suggest that BptA is important for B. burgdorferi persistence in ticks. OspC is a 22-kDa immunodominant B. burgdorferi lipoprotein that is encoded by circular plasmid (cp) 26 (Fuchs et al., 1992; Marconi et al., 1993; Sadziene et al., 1993; Fraser et al., 1997). Although OspC has been the focus of intense research for over 15 years, the biological role of OspC in the B. burgdorferi enzootic cycle is still under investigation. To date, OspC is widely known for its reciprocal production to OspA and OspB, which has become a prototypical model for the differential gene expression that mediates spirochete transmission from the arthropod to the mammalian host (Radolf & Caimano, 2008).